Revisiting the magnetic structure of Holmium at high pressure by using neutron diffraction
Scientific Reports volume 13, Article number: 12168 (2023) Cite this article
160 Accesses
Metrics details
Low-temperature neutron diffraction experiments at \(P= 8\) GPa have been conducted to investigate the magnetic structures of metallic Holmium at high pressures by employing a long d-spacing high-flux diffractometer and a Paris-Edinburgh press cell inside a cryostat. We find that at \(P=8\) GPa and \(T=5\) K, no nuclear symmetry change is observed, keeping therefore the hexagonal closed packed (hcp) symmetry at high pressure. Our neutron diffraction data confirm that the ferromagnetic state does not exist. The magnetic structure corresponding to the helimagnetic order, which survives down to 5 K, is fully described by the magnetic superspace group formalism. These results are consistent with those previously published using magnetization experiments.
Magnetism of itinerant electrons1 have played an important role in condensed matter physics to explain the properties of ferromagnetic metals. In particular, in the 3d transition metals based on Fe, Co, and Ni, the mechanism responsible for their ferromagnetism can be understood within the Stoner model2.
On the other hand, the ferromagnetism in the 4f-electron lanthanide metals, such as Gd, Tb, Dy, Ho, Er, and Tm, is explained by the Ruderman–Kasuya–Kittle–Yosida (RKKY) interaction between localized moments of the 4f-electrons mediated by the conduction electrons3,4,5. The spatially damped oscillation of the spin polarization of the conduction electrons is responsible of the competition between the ferromagnetic (FM) and antiferromagnetic (AFM) interactions, which often results in an incommensurate helimagnetic structure (HM).
The RKKY interaction constant (\(J_{{{\text{RKKY}}}}\)) is highly sensible to subtle lattice contractions that happen at low temperatures. This could destabilize the HM state giving place to a FM ground state. Hereafter, the magnetic transition temperatures between the FM and HM states and between the HM and the paramagnetic (PM) states are denoted as \(T_{\text{C}}\) and \(T_{\text{N}}\), respectively.
The structure of all 4f-lanthanide FM metals is hexagonal closed packed, hcp, with stacking unit ABA at ambient pressure (AP), and exhibit the structural transformations in the sequence hcp (ABA) \(\rightarrow\) Sm-type (ABABCBCACA) \(\rightarrow\) double-hcp (dhcp) (ABACA) \(\rightarrow\) fcc (ABCA) \(\rightarrow\) trigonal under increasing pressure6,7.
The evoution of the magnetic properties with the structural transformations in 4f-lanthanide metals has been studied theoretically8 and reported experimentally by magnetic characterization9,10,11,12,13, electrical resistivity14,15,16,17,18,19,20, neutron diffraction14,16,21,22,23,24,25, X-ray diffraction26, and Mössbauer spectroscopy27. In particular, neutron diffraction experiments have been successfully employed to study the magnetic phases of Ho metal at high pressures and variable temperatures, as we briefly summarize in the next paragraph.
The first neutron scattering experiment in this metal was performed at AP by Koehler et al.28. They reported that Ho magnetic moments form a basal plane helix below \(T_{\text{N}}=133\) K, and a conical configuration, with a net magnetic moment parallel to the c-axis, below \(T_{\text{C}}=20\) K, in agreement with later neutron experiments29,30. In year 1968, Umebayashi et al.21 studied Tb and Ho at pressures below 1 GPa and temperatures above 80 K, where the pressure dependences of \(T_{\text{N}}\) and the helical turn angle were measured. It was found that the HM ordering is shifted to lower temperatures when the pressure is increased. In 1988, Achiwa et al.31 studied the Ho metal up to 2.1 GPa in the temperature range 10 K to \(T_{\text{N}}\). The helical pitch angle evolution with temperature was found in agreement with Ref.21 for \(P=0.6\) GPa, while for higher pressures the values of the angle increased showing a lock-in value below 20 K.
Recently, the new available extreme conditions neutron diffractometers have facilitated the study of the high pressure region of Holmium. In 2012, Thomas et al.14 performed neutron diffraction experiments at maximum pressures of 6.6 GPa at 89, 110 and 300 K. They established the incommensurate nature of the HM phase and determined the decrease of \(T_{\text{N}}\) from approximately 122 K at AP at a rate of -4.9 K/GPa up to a pressure of 9 GPa, above which the PM to HM transition vanishes, in agreement with Ref.21,31. In 2020, Perreault et al.25 performed neutron diffraction experiments at maximum pressures of 20 GPa and temperatures above of 10 K. They observed two magnetic transitions below 10 GPa: one to an incommensurate HM phase and another to a conical FM phase. For pressures above 10 GPa in the Sm-type phase, and above 19 GPa in the dhcp phase, the appearance of a magnetic peak at 3 Å and the increase of the intensity of some nuclear peaks were assigned to the presence of a FM ordering below 30 K.
P dependence of \(T_{\text{N}}\) and \(T_{\text{C}}\) for Ho11,12,13. The green point at \(P=8\) GPa and \(T_{\text{N}}=105\) K has been determined in this study. Blue and red symbols correspond to the data obtained from our previous magnetic characterization studies using an SQUID magnetometer, while the black empty triangles and green empty diamonds correspond to the previous a.c. susceptibility and neutron diffraction experiments, respectively. The size of the error bars, in temperature and pressure, is smaller than the size of the symbols employed. The color bar at the bottom part of the figure indicates the different phase transformations happening as the pressure increases at room temperature according to ref.32. The present study focuses on the light-blue shaded region.
The P dependence of \(T_{\text{N}}\) and \(T_{\text{C}}\), evaluated with magnetic susceptibility11 (black-empty symbols), a.c and d.c magnetization12,13 (blue and red filled symbols), and neutron diffraction25 (green-empty symbols) is showed for Ho in the magnetic phase diagram in Fig. 1.
In our recent a.c. magnetization measurements, using a superconducting quantum interference device (SQUID) magnetometer at zero applied magnetic field (\(H_{\text{dc}}\) = 0 T), the signal of the FM anomaly was reduced below any detectable level at a pressure between 5.7 and 8.8 GPa13. The anomaly at 5.7 GPa suggested a first order phase transition that remained in the range 0.5–11.6 GPa after remeasuring the sample by decreasing the pressure from 11.2 GPa (the results in the sequence after 11.2 GPa are not visible in Fig. 1 but details can be found in ref.13). Thus, residual strain influenced the suppression of the FM order.
On the other hand, in d.c. magnetization measurements at \(H_{\text{dc}}\) = 0.5 T, which is one-third of the critical field to the saturated state, the FM anomaly was still observed at 7.3 GPa, and a broad hump appeared at 9.2 GPa12. It suggested that the FM order becomes unstable above 7.3 GPa and a short range order composed of small grains is developed at 9.2 GPa. In different magnetization measurements, using a SQUID vibrating-coil-magnetometer method, the development of a ferromagnetic magnetization was observed at 8.2 GPa, which disappeared at 12 GPa13. All these facts together stressed that the P region between 8 and 12 GPa is a critical region to understand the FM ordering.
Thus, different series of magnetic measurements showed that; (i) the HM transition was observed at pressures up to 12 GPa, while the FM transition seems to be unstable at approximately 8 GPa, and (ii) the ferromagnetic short range ordering could survive until approximately 11 GPa12,13.
However, previous neutron diffraction experiments, covering a d spacing between 1.0 and 3.5 Å, reported that the FM ordering survives until at least 20 GPa25. Therefore, it seems that a controversy exists between the last neutron diffraction experiments by Perreault et al.25 and the macroscopic magnetic characterization of Ho at high pressures12,13.
With the aim to elucidate this controversy, in the present study, by performing neutron powder diffraction experiments, but covering a wide d-spacing region (\(1.4\le d \le 50\) Å), we determined the magnetic structure at 8 GPa, in the temperature range \(5\le T \le 300\,{\text{K}}\). The magnetic superspace group (MSSG) formalism33,34,35 has been employed to classify the symmetry of the magnetic structure.
Polycrystalline sample of metallic natural Ho with high purity (99.999\(\%\)) was purchased from Sigma-Aldrich. Especial care was taken to manipulate the sample minimizing the exposure time to air.
Neutron powder diffraction experiments were carried out on the high-flux 2-axis neutron diffractometer D1B of the Institut Laue-Langevin (ILL) in Grenoble, France. This instrument has a MWGC 1D-detector spanning an angular range of 128\(^\circ\) with a definition of 0.1\(^\circ\). A Radial Oscillating Collimator (ROC) was installed in order to eliminate the spurious signals produced by the sample environment.
Two data acquisitions were taken at AP and room temperature (RT) for a Ho powder sample inside a 6 mm diameter vanadium can, with neutron wavelengths of \(\lambda =1.28\) Å and 2.52 Å which allowed to explore d-spacings, respectively, of 0.7–15.0 Å and 1.4–50 Å.
The data collection at 8 GPa were performed with \(\lambda =2.52\) Å which correspond to the maximum flux configuration of the D1B instrument. For these acquisitions, the powder was placed in a null-scattering TiZr gasket using a deuterated 4:1 ethanol-methanol mix as pressure transmitter medium, (the same that the one employed before by Perreault et al. at 20 GPa25), which is the typical in all the neutron diffraction experiments. Then, it was introduced inside a VX5/180 Paris-Edinburgh (PE) pressure cell36,37 equipped with SINE-type sintered diamond anvils38. A pressure of 0.12 GPa was applied to the PE cell, which for the sample corresponded to 8 GPa, after calibration with a Pb flake placed with the sample. Then the PE cell was cooled using liquid nitrogen and helium from RT to 5 K. At this temperature, a 4.5 hours isotherm acquisition was performed. Then the sample was warmed back to RT in 10 hours and diffractograms were collected every 15 minutes.
It is well known that the 4:1 ethanol-methanol mixture is not the ideal transmitting media at low temperatures but it is a good approach to the hydrostatic behavior at room temperature for pressures below 10 GPa39. Furthermore, the fact that we do not detect any remarkable change, with decreasing the temperature, with the sample inside the PE cell, neither in the background of the diffractograms, nor in the width of the Bragg lines (see Fig. 3), suggests that the quality of the pressure at 5 K is good enough in our experimental conditions.
Different crystallographic tools were employed for the determination of the crystal and magnetic structures, which include the FullProf Suite40, the ISODISTORT Suite41,42, and utilities within the Bilbao Crystallographic Server43,44,45,46 for the symmetry analysis and visualization.
Figure 2 shows the diffraction patterns collected with wavelengths \(\lambda =1.28\) Å (top) and 2.52 Å (bottom). The peaks observed in the diffraction patterns at AP and RT can be indexed by the paramagnetic \(P6_3/mmc.1'\) MSSG (No. 194.264). This crystal structure corresponds with a hcp structure where the Ho atom is located in the Wyckoff position (WP) 2c, with coordinates (1/3 2/3 1/4). The cell parameters obtained from a multi-pattern refinement of both diffractograms are: \(a = b = 3.5690(2)\)Å, \(c = 5.6020(4)\) Å, \(\alpha = \beta = 90^{\circ }, \gamma = 120^{\circ }\); with R\(_{\text{Bragg}}\) = 15.1 and 11.2, for \(\lambda\) = 1.28 Å and 2.52 Å, respectively.
Diffraction patterns collected with \(\lambda =1.28\) Å (up) and 2.52 Å (down) at RT and AP. In red are shown the observed points and in black continuous line the calculated pattern with the parameters described in the main text. The blue continuous line and the green ticks indicate, the difference between the observed and calculated profile, and the nuclear peaks generated by the space group, respectively.
Insert of Fig. 3 shows the diffraction pattern collected with \(\lambda =2.52\) Å at \(P= 8\) GPa and \(T=5\) K. The first remarkable fact is the presence of a new high-intensity peak observed at \(d\sim 21\) Å that was not present in the diffractograms taken at RT. The low part of the Fig. 3 shows a zoom of the small d-spacing region for the diffractograms collected at \(T=5\) K (middle part) and RT (bottom part) with the sample inside the PE cell in the cryostat. With this complex sample environment, once the sample is inside the gasket in the PE cell, the intensity is greatly suppressed, since for high pressure experiments the quantity of sample irradiated by the neutron beam is much smaller. Additionally, a huge increase of the background and a broad feature around 3.7 Å are observed even with the ROC in front of the detector, mainly due to the large incoherent scattering of hydrogen from the pressure transmitting fluid47.
The insert shows the 5 K diffractogram in the full d-spacing scale accessible with the neutron wavelength \(\lambda =2.52\) Å at 8 GPa. A large magnetic signal appears at \(\sim 21\) Å . A zoom of the small d-spacing region of the diffractograms collected with \(\lambda =2.52\) Å is displayed in the middle part (5 K) and bottom part (RT) of the figure. In red are shown the observed points and in back continuous line the calculated pattern with the parameters described in the main text. The blue continuous line and the green ticks indicate the difference between the observed and calculated profile and the nuclear and satellite peaks generated by the magnetic superspace group, respectively. Red and orange asterisks label the satellite peaks visible only in the HM phase. Black and grey asterisks label the nuclear peaks visible at both temperatures. Purple diamonds label the peaks due to the Pb flake. The broad feature around 3.7 Å is due to the pressure transmitting fluid and treated as a background contribution.
The diffractogram observed at RT inside the PE cell, after warming from 5 K, reveals the presence of two distinct sets of reflections. The first set corresponds to the Pb flake, where the reflections are indexed by the cubic space group \(Fm\bar{3}m\) (No. 225), with Pb atoms occupying the WP 4a48 (see purple diamonds label in Fig. 3). By analysing the position of the reflection \((2\ 0\ 0)\), located at \(d=2.367(1)\) Å, we can determine the cell parameter to be \(a=4.734(2)\) Å. This information allows us to derive a volume per atom of \(V=26.52(3)\) Å\(^3\)/atom, which, when considering the equations of state presented in49,50, yields a pressure of 8.0(1) GPa. The other set of reflections corresponds to the Ho sample and is indexed by the same hcp structure (\(P6_3/mmc.1'\)) with shorter cell parameters (\(a=b=3.4030(7)\) Å, \(c= 5.345(2)\) Å, and R\(_{\text{Bragg}}\) = 6.07) than the one observed at AP. Therefore, no structural transition to the Sm-type phase has been observed as the pressure was increased from AP to 8 GPa.
However, at 8 GPa and 5 K, several new magnetic satellites appear, marked with red and orange asterisks in Fig. 3, including the one clearly observed at \(d\sim 21\) Å. These satellites are indexed with an incommensurate propagation vector \(\vec {k}_\mathrm{{HM}}=(0\,0\,\delta )\) with \(\delta =\pm 0.2536(1)\), in units of \(c^*\), in agreement with Ref.25. The plus or minus sign in the propagation vector indicates a clock-wise or anti clock-wise propagation. The nuclear peaks, marked with black and grey asterisks in Fig. 3, remain unchanged respect to the ones at RT, suggesting that no FM order is present, even at the lowest temperature. The analysis of this new magnetic state will be elucidated in the next subsection.
Regarding the reflections due to the Pb flake, at 5 K the reflection \((2\, 0\, 0)\) can still be observed at \(d=2.367(1)\) Å, which ensures that the pressure was kept constant (within a 0.1 GPa range) during the warming process.
We use the symmetry analysis to reduce the number of possible magnetic ground states in Ho-hcp compatible with the observed propagation vector \(\vec {k}_\mathrm{{HM}}\). We can decompose the magnetic representation for the Ho atom, located at WP 2c, as a direct sum of Irreducible Representations (irreps) of the parent group \(P6_3/mmc.1'\) for the \(\Delta\) point, \((0\,0\,\delta )\), of the Brillouin zone (BZ) (we adopted the international notation for the irreps labels and MSSG established in41,42,43), as follows:
The basis vectors of each irrep are given in Table 1. The magnetic structure described by both, the 1d-irreps m\(\Delta _2\) and m\(\Delta _3\) consists of a sinusoidal modulation along the c-axis. Meanwhile, the 2d-irreps, m\(\Delta _5\) and m\(\Delta _6\), describe helices in which the magnetic moments are contained in ferromagnetic ab planes, and propagate along the c-axis. However, both models differ greatly when considering the phase-shift between the Ho atoms in the unit cell. While in the case of m\(\Delta _6\) the phase-shift is the same as the pitch angle of the helix: \(\phi =180\times k_\mathrm{{HM}}=\pm 45.65(2)^\circ\), in m\(\Delta _5\) the phase-shift is given by: \(\phi =180\times (k_\mathrm{{HM}}+1)=\pm 225.65(2)^\circ\). Therefore, the magnetic structure given by m\(\Delta _6\) can be considered as a single helix, while for m\(\Delta _5\) the system is composed of two independent helices, one for each atom in the unit cell. The magnetic structure at 5 K, labelled with m\(\Delta _6\), and the \(\phi\) angle are depicted in Fig. 4.
Magnetic structure obtained from the refinement of the data with the model given by the \(P6_322.1'(0\,0\,\gamma )h00s\) MSSG. Five nuclear unit cells along c axis are shown. The right bottom side shows the pitch angle \(\phi\) formed by the magnetic moments in adjacent ferromagnetic ab planes along c. The right upper side shows a projection of the magnetic moments onto the ab planes.
After a systematic trial and error procedure, it was observed that m\(\Delta _2\), m\(\Delta _3\) and m\(\Delta _5\) do not fit the data, since they assign zero intensity for the main magnetic peak indexed as \((0\,0\,0)\pm \vec {k}_\mathrm{{HM}}\) at \(d\sim 21\) Å. However, the magnetic satellite reflections (red and orange asterisks in Fig. 3) can be correctly fitted by the 2d-irrep m\(\Delta _6\).
The combination between the parent group \(P6_3/mmc.1'\) and the magnetic modulations for Ho atoms given by the irrep m\(\Delta _6\) give as a result the \(P6_322.1'(0\,0\,\gamma )h00s\) MSSG. Within the MSSG formalism, the magnetic structure is described by a basic structure, related to the nuclear paramagnetic cell, in addition to a series of magnetic modulation functions that describe the variation from the basic structure of the magnetic moments. In our case, with just one propagation vector \(\vec {k}_\mathrm{{HM}}\) and no net magnetic moment (i.e. no existence of a propagation vector \(\vec {k}_\mathrm{{FM}}=(0\,0\,0)\)), the magnetic structure is described by:
where the internal coordinate \(x_4\) is given by the product of the propagation vector and the position \(\vec {r}_{lj}\) of the atom j in the l-th unit cell (\(x_4 = \vec {k}_\mathrm{{HM}}\cdot \vec {r}_{lj}\)).
The explicit amplitudes of the cosine (\(\vec {M}_{j,\text{c}}\)) and sine (\(\vec {M}_{j,\text{s}}\)) components of the magnetic moment for the \(P6_322.1'(0\,0\,\gamma )h00s\) MSSG are given in Table 2. In this MSSG, the Ho atom remains in the WP 2c position and the symmetry constraints imposed allow only for 1 free parameter to describe the magnetic structure, which is the modulus of the magnetic moment (M).
Figure 5 shows a 2D plot of the thermo-diffractograms obtained at 8 GPa as the system was heated from 5 K to RT. From them, the onset of the helical magnetic ordering is estimated to occur around \(T_{\text{N}}\) = 105(2) K, with the appearance of a peak at \(d\sim 21\) Å (\(2\theta \sim 7^\circ\)), which is in agreement with previous studies11,12,13,25.
2D plot of the thermo-diffractograms measured at 8 GPa with \(\lambda =2.52\) Å as the system was heated from 5 K to RT. The appearance of the peak at \(d\sim 21\) Å(\(2\theta \sim 7^\circ\)) is clearly visible at \(T=\) 105(2) K.
The temperature dependence of the intensity for the (1 0 1) nuclear reflection (in black) and the satellite \((0\,0\,0)\pm \vec {k}_\mathrm{{HM}}\) (in red) is shown in Fig. 6b. The evolution of these two lines allows to quantitatively distinguish between the magnetic phases that can be present, as the nuclear and satellite peaks chosen should be the most sensible if a FM (\(\vec {k}_\mathrm{{FM}}=(0\,0\,0)\)) or HM order (\(\vec {k}_\mathrm{{HM}}\)), respectively, should be present. No change is observed neither in the (1 0 1) nuclear reflection, nor other nuclear lines, as the temperature decreases. This fact supports the hypothesis of absence of any FM ordering, or if present, put an upper limit of 0.2\(\mu _{\text{B}}\) to such contribution.
Regarding the evolution with temperature of the satellite \((0\,0\,0)\pm \vec {k}_\mathrm{{HM}}\), its intensity was fitted to the power law \(I \propto \epsilon ^{2\beta }\), where \(\epsilon = T_{\text{N}}-T\) is the reduced temperature (see Fig. 7). The obtained value for the critical exponent is \(\beta =0.40(1)\), which is in good agreement with the value predicted by Bak and Mukamel51, and reported by previous studies for pure helimagnetic phases at AP and 130 K conditions52,53,54,55. It constitutes another indication of the absence of any FM component.
(a) Temperature dependence of the ratio c/a. (b) Logarithmic scale plot of the intensity evolution with temperature for the nuclear peak \((1\,0\,1)\) (black) and the satellite reflection \((0\,0\,0)\pm \vec {k}_\mathrm{{HM}}\) (red). These peaks are marked with black and red asterisks in the diffractograms of Fig. 3. (c) Temperature dependence of the modulus M(\(\mu _{\text{B}}\)) (blue squares) and \(\phi\) angle values (orange triangles). The lines are a guide to the eyes. A change in the linear behaviour of \(\phi\) is observed at around 40 K.
Using the magnetic model labelled by the \(P6_322.1'(0\,0\,\gamma )h00s\) MSSG to fit the diffraction patterns collected at each temperature, the dependence of the pitch angle, \(\phi\), and modulus, M, of the Ho magnetic moment versus temperature was obtained (see Fig. 6c).
As the temperature decreases below \(T_{\text{N}}\sim 105(2)\) K, the magnetic moment increases until it saturates at 6.94(1)\(\mu _{\text{B}}\), a value in good agreement with the saturation magnetization obtained at AP and \(T = 5\) K12. Meanwhile, the \(\phi\) angle decreases following two linear dependences from 48.6(1)\(^\circ\) at 105 K to 45.65(2)\(^\circ\) at 5K, with a change of slope around \(T\sim 40\) K. This evolution is also coherent with previous neutron diffraction experiments25, and can be understood if we consider the strong dependence of the helix period with the axial ratio c/a of the hexagonal phase8. Such dependence can also explain the change observed around 40 K, since the ratio c/a is stabilized below that temperature (see Fig. 6a).
Logarithmic plot of the intensity of the satellite reflection \((0\,0\,0)\pm \vec {k}_\mathrm{{HM}}\) as a function of the reduced temperature. The value of the transition temperature \(T_{\text{N}}\) was estimated from Fig. 5.
In our last study using SQUID magnetization measurements it was reported that the HM order survives up to \(P=12\) GPa, while the disappearance of the FM order, or, at least, a remarkable suppression of ferromagnetic net magnetic moments, was observed above 8 GPa13. As the intensity of the FM anomaly could not be detected just above the critical pressure for the phase boundary between the hcp and Sm-type phases, it was suggested that the disappearance of the FM order is related to the structural phase transition.
However, the present neutron diffraction experiments, focused on the magnetic structure at \(P=8\) GPa, confirm that the hcp structure remains stable until at least 8 GPa. Additionally, an incommensurate HM order is observed below \(T_{\text{N}}=105(2)\) K, which persists down to the lowest temperature measured (\(T=5\) K), while no evidence of FM ordering was observed within the entire temperature range. Therefore, the present results help to clarify that the FM order becomes unstable and disappear just before the structural phase transition. Furthermore, the magnetic structure observed at 8 GPa is consistent with previous magnetic measurements, taking into account the pressure distribution with the order of ±0.5 GPa during the high-pressure experiment.
In the neutron diffraction study by Perreault et al., the FM order was reported to survive in both the Sm-type phase at 14.2 GPa and the dhcp phase at 20.2 GPa25. This FM transition was marked by the appearance of a magnetic peak at \(d=3\) Å accompanied by an increase in the intensity of all nuclear peaks. However, in those experiments only a small region of d-spacing (1.0–3.5 Å) was covered, which made it difficult to elucidate the additional existence of HM order at those pressures, since the expected most intense magnetic signal should appear at larger d-spacing (see Fig. 3). Therefore, it would be interesting to confirm those results by performing neutron experiments at such pressures in a long d-spacing diffractometer.
We conducted neutron diffraction experiments to investigate the magnetic structures of Ho at \(P= 8\) GPa. Our findings indicate that the nuclear symmetry remains unchanged, preserving the hexagonal close-packed (hcp) symmetry at \(P=8\) GPa. The helimagnetic order persists down to 5 K, and the analysis of its magnetic structure, using the magnetic superspace group formalism, allows to determine the critical exponent \(\beta =0.40(1)\), in agreement with previous theoretical model for pure helices. Meanwhile no FM contribution is observed at any temperature. These results are consistent with previously published findings from magnetization experiments.
Chikazumi, S. Physics of Ferromagnets (Oxford University Press, 1997).
Stoner, E. C. Collective electron ferromagnetism II. Energy and specific heat. Proc. R. Soc. Lond. A 169, 339–371 (1939).
Article ADS CAS MATH Google Scholar
Ruderman, M. & Kittel, C. Indirect exchange coupling of nuclear magnetic moments by conduction electrons. Phys. Rev. 96, 99. https://doi.org/10.1103/PhysRev.96.99 (1954).
Article ADS CAS Google Scholar
Kasuya, T. A theory of metallic ferro-and antiferromagnetism on Zener’s model. Prog. Theor. Phys. 16, 45–57. https://doi.org/10.1143/PTP.16.45 (1956).
Article ADS MATH Google Scholar
Yosida, K. Magnetic properties of Cu–Mn alloys. Phys. Rev. 106, 893. https://doi.org/10.1103/PhysRev.106.893 (1957).
Article ADS Google Scholar
Akella, J., Smith, G. S. & Jephcoat, A. P. High-pressure phase transformation studies in gadolinium to 106 GPa. J. Phys. Chem. Solids 49, 573–576. https://doi.org/10.1016/0022-3697(88)90069-8 (1988).
Article ADS CAS Google Scholar
Grosshans, W. & Holzapfel, W. Atomic volumes of rare-earth metals under pressures to 40 GPa and above. Phys. Rev. B 45, 5171. https://doi.org/10.1103/PhysRevB.45.5171 (1992).
Article ADS CAS Google Scholar
Hughes, I. D. et al. Lanthanide contraction and magnetism in the heavy rare earth elements. Nature 446, 650–653. https://doi.org/10.1038/nature05668 (2007).
Article ADS CAS PubMed Google Scholar
McWhan, D. & Stevens, A. Effect of pressure on the magnetic properties and crystal structure of Gd, Tb, Dy, and Ho. Phys. Rev. 139, A682. https://doi.org/10.1103/PhysRev.139.A682 (1965).
Article ADS Google Scholar
Iwamoto, T., Mito, M., Hitaka, M., Kawae, T. & Takeda, K. Magnetic measurement of rare earth ferromagnet gadolinium under high pressure. Physica B 329–333, 667–668. https://doi.org/10.1016/S0921-4526(02)02516-4 (2003).
Article ADS CAS Google Scholar
Jackson, D. D., Malba, V., Weir, S. T., Baker, P. A. & Vohra, Y. K. High-pressure magnetic susceptibility experiments on the heavy lanthanides Gd, Tb, Dy, Ho, Er, and Tm. Phys. Rev. B 71, 184416. https://doi.org/10.1103/PhysRevB.71.184416 (2005).
Article ADS CAS Google Scholar
Mito, M. et al. Volume shrinkage dependence of ferromagnetic moment in the lanthanide ferromagnets gadolinium, terbium, dysprosium, and holmium. J. Phys. Chem. Solids 70, 1290–1296. https://doi.org/10.1016/j.jpcs.2009.07.013 (2009).
Article ADS CAS Google Scholar
Mito, M. et al. Relationship of magnetic ordering and crystal structure in lanthanide ferromagnets Gd, Tb, Dy, and Ho at high pressures. Phys. Rev. B 103, 24444. https://doi.org/10.1103/PhysRevB.103.024444 (2021).
Article ADS CAS Google Scholar
Thomas, S. A. et al. Neutron diffraction and electrical transport studies on the incommensurate magnetic phase transition in holmium at high pressures. J. Phys. Condens. Matter 24, 216003. https://doi.org/10.1088/0953-8984/24/21/216003 (2012).
Article ADS CAS PubMed Google Scholar
Samudrala, G. K., Tsoi, G. M., Weir, S. T. & Vohra, Y. K. Structural and magnetic phase transitions in gadolinium under high pressures and low temperatures. High Press. Res. 34, 385–391. https://doi.org/10.1080/08957959.2014.977277 (2014).
Article ADS CAS Google Scholar
Thomas, S. A. et al. Neutron diffraction and electrical transport studies on magnetic ordering in terbium at high pressures and low temperatures. High Press. Res. 33, 555–562. https://doi.org/10.1080/08957959.2013.806503 (2013).
Article ADS CAS Google Scholar
Samudrala, G. K., Tsoi, G. M., Weir, S. T. & Vohra, Y. K. Magnetic ordering temperatures in rare earth metal dysprosium under ultrahigh pressures. High Press. Res. 34, 266–272. https://doi.org/10.1080/08957959.2014.903946 (2014).
Article ADS CAS Google Scholar
Lim, J., Fabbris, G., Haskel, D. & Schilling, J. S. Magnetic ordering at anomalously high temperatures in Dy at extreme pressures. Phys. Rev. B 91, 045116. https://doi.org/10.1103/PhysRevB.91.045116 (2015).
Article ADS CAS Google Scholar
Lim, J., Fabbris, G., Haskel, D. & Schilling, J. S. Anomalous pressure dependence of magnetic ordering temperature in Tb revealed by resistivity measurements to 141 GPa: Comparison with Gd and Dy. Phys. Rev. B 91, 174428. https://doi.org/10.1103/PhysRevB.91.174428 (2015).
Article ADS CAS Google Scholar
Lim, J., Fabbris, G., Haskel, D. & Schilling, J. S. Record high magnetic ordering temperature in a lanthanide at extreme pressure. J. Phys. Conf. Ser. 950, 042025. https://doi.org/10.1088/1742-6596/950/4/042025 (2017).
Article CAS Google Scholar
Umebayashi, H., Shirane, G., Frazer, B. & Daniels, W. Neutron diffraction study of Tb and Ho under high pressure. Phys. Rev. 165, 688. https://doi.org/10.1103/PhysRev.165.688 (1968).
Article ADS CAS Google Scholar
Kawano, S., Achiwah, N., Onodera, A. & Nakaid, Y. Neutron diffraction studies of pressure effects on magnetic structures of Tb. Phys. B Condens. Matter 180–181, 46–48. https://doi.org/10.1016/0921-4526(92)90655-C (1992).
Article ADS Google Scholar
Perreault, C., Vohra, Y., dos Santos, A., Molaison, J. & Boehler, R. Magnetic ordering in rare earth metal dysprosium revealed by neutron diffraction studies in a large-volume diamond anvil cell. High Press. Res. 39, 588–597. https://doi.org/10.1080/08957959.2019.1688800 (2019).
Article ADS CAS Google Scholar
Perreault, C. S., Vohra, Y. K., dos Santos, A. M. & Molaison, J. J. Magnetic structure of antiferromagnetic high-pressure phases of dysprosium. J. Magn. Magn. Mater. 545, 168749. https://doi.org/10.1016/j.jmmm.2021.168749 (2022).
Article CAS Google Scholar
Perreault, C., Vohra, Y., dos Santos, A. & Molaison, J. Neutron diffraction study of magnetic ordering in high pressure phases of rare earth metal holmium. J. Magn. Magn. Mater. 507, 166843. https://doi.org/10.1016/j.jmmm.2020.166843 (2020).
Article CAS Google Scholar
Cunningham, N. C., Qiu, W. & Vohra, Y. K. Observation of complete regular trivalent rare earth sequence in heavy lanthanide metal holmium under high pressure. High Press. Res. 26, 43–50. https://doi.org/10.1080/08957950600646097 (2006).
Article ADS CAS Google Scholar
Bi, W. et al. Studies of magnetism in dysprosium under extreme pressures. In APS March Meeting Abstracts, Vol. 2017 of APS Meeting Abstracts, B35.015 (2017).
Koehler, W. C., Cable, J. W., Wilkinson, M. K. & Wollan, E. O. Magnetic structures of holmium. I. The virgin state. Phys. Rev. 151, 414–424. https://doi.org/10.1103/physrev.151.414 (1966).
Article ADS CAS Google Scholar
Pechan, M. J. & Stassis, C. Magnetic structure of holmium. J. Appl. Phys. 55, 1900–1902. https://doi.org/10.1063/1.333513 (1984).
Article ADS CAS Google Scholar
Simpson, J. A., McMorrow, D. F., Cowley, R. A. & Jehan, D. A. Trigonal interactions in holmium. Phys. Rev. B 51, 16073–16082. https://doi.org/10.1103/PhysRevB.51.16073 (1995).
Article ADS CAS Google Scholar
Achiwa, N., Kawano, S., Onodera, A. & Nakai, Y. Effects of pressure on the helical turn angle of holmium. Le J. Phys. Colloq. 49, C8-349–C8-350. https://doi.org/10.1051/jphyscol:19888156 (1988).
Samudrala, G. K. & Vohra, Y. K. Chapter 257–Structural properties of lanthanides at ultra high pressure. In Including Actinides, Vol. 43 of Handbook on the Physics and Chemistry of Rare Earths (eds Bünzli, J.-C.G. & Pecharsky, V. K.) 275–319 (Elsevier, 2013). https://doi.org/10.1016/B978-0-444-59536-2.00004-0.
Janner, A. & Janssen, T. Symmetry of incommensurate crystal phases. I. Commensurate basic structures. Acta Crystallogr. Sect. A 36, 399–408. https://doi.org/10.1107/s0567739480000885 (1980).
Article ADS MathSciNet Google Scholar
Perez-Mato, J. M., Ribeiro, J. L., Petricek, V. & Aroyo, M. I. Magnetic superspace groups and symmetry constraints in incommensurate magnetic phases. J. Phys. Condens. Matter 24, 163201. https://doi.org/10.1088/0953-8984/24/16/163201 (2012).
Article ADS CAS PubMed Google Scholar
Rodríguez-Carvajal, J. & Villain, J. Magnetic structures. C. R. Phys. 20, 770–802. https://doi.org/10.1016/j.crhy.2019.07.004 (2019).
Article ADS CAS Google Scholar
Besson, J. et al. Neutron powder diffraction above 10 GPa. Phys. B Condens. Matter 180–181, 907–910. https://doi.org/10.1016/0921-4526(92)90505-M (1992).
Article ADS Google Scholar
Klotz, S., Strässle, T., Rousse, G., Hamel, G. & Pomjakushin, V. Angle-dispersive neutron diffraction under high pressure to 10 GPa. Appl. Phys. Lett. 86, 031917. https://doi.org/10.1063/1.1855419 (2005).
Article ADS CAS Google Scholar
Klotz, S. et al. Advances in the use of Paris-Edinburgh presses for high pressure neutron scattering. J. Neutron Res. 21, 117–124. https://doi.org/10.3233/jnr-190120 (2020).
Article Google Scholar
Otto, J. W., Vassiliou, J. K. & Frommeyer, G. Nonhydrostatic compression of elastically anisotropic polycrystals. I. Hydrostatic limits of 4:1 methanol-ethanol and paraffin oil. Phys. Rev. B 57, 3253. https://doi.org/10.1103/PhysRevB.57.3253 (1998).
Article ADS CAS Google Scholar
Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Condens. Matter 192, 55–69. https://doi.org/10.1016/0921-4526(93)90108-I (1993).
Article ADS Google Scholar
Stokes, H. T., Hatch, D. M. & Campbell, B. J. ISODISTORT, ISOTROPY software suite. iso.byu.edu (2017).
Campbell, B. J., Stokes, H. T., Tanner, D. E. & Hatch, D. M. ISODISPLACE: A web-based tool for exploring structural distortions. J. Appl. Crystallogr. 39, 607–614. https://doi.org/10.1107/s0021889806014075 (2006).
Article CAS Google Scholar
Aroyo, M. I. et al. Crystallography online: Bilbao crystallographic server. Bulg. Chem. Commun. 43, 183–197 (2011).
CAS Google Scholar
Aroyo, M. I. et al. Bilbao crystallographic server: I. Databases and crystallographic computing programs. Z. Krist. Cryst. Mater.https://doi.org/10.1524/zkri.2006.221.1.15 (2006).
Article Google Scholar
Aroyo, M. I., Kirov, A., Capillas, C., Perez-Mato, J. M. & Wondratschek, H. Bilbao crystallographic server. II. Representations of crystallographic point groups and space groups. Acta Crystallogr. Sect. A Found. Crystallogr. 62, 115–128. https://doi.org/10.1107/s0108767305040286 (2006).
Article ADS MATH Google Scholar
Perez-Mato, J. et al. Symmetry-based computational tools for magnetic crystallography. Annu. Rev. Mater. Res. 45, 217–248. https://doi.org/10.1146/annurev-matsci-070214-021008 (2015).
Article ADS CAS Google Scholar
Klotz, S., Chervin, J.-C., Munsch, P. & Marchand, G. L. Hydrostatic limits of 11 pressure transmitting media. J. Phys. D Appl. Phys. 42, 075413. https://doi.org/10.1088/0022-3727/42/7/075413 (2009).
Article ADS CAS Google Scholar
Bouad, N., Chapon, L., Marin-Ayral, R.-M., Bouree-Vigneron, F. & Tedenac, J.-C. Neutron powder diffraction study of strain and crystallite size in mechanically alloyed PbTe. J. Solid State Chem. 173, 189–195. https://doi.org/10.1016/S0022-4596(03)00017-3 (2003).
Article ADS CAS Google Scholar
Mao, H. et al. High-pressure phase transition and equation of state of lead to 238 GPa. Solid State Commun. 74, 1027–1029. https://doi.org/10.1016/0038-1098(90)90479-U (1990).
Article ADS CAS Google Scholar
Vohra, Y. K. & Ruoff, A. L. Static compression of metals Mo, Pb, and Pt to 272 GPa: Comparison with shock data. Phys. Rev. B 42, 8651–8654. https://doi.org/10.1103/PhysRevB.42.8651 (1990).
Article ADS CAS Google Scholar
Bak, P. & Mukamel, D. Physical realizations of n \(\ge\) 4-component vector models. III. Phase transitions in Cr, Eu, MnS\(_2\), Ho, Dy, and Tb. Phys. Rev. B 13, 5086–5094. https://doi.org/10.1103/physrevb.13.5086 (1976).
Article ADS CAS Google Scholar
Eckert, J. & Shirane, G. A neutron diffraction determination of the critical exponent \(\beta\) for the n = 4 system holmium. Solid State Commun. 19, 911–912. https://doi.org/10.1016/0038-1098(76)90684-0 (1976).
Article ADS CAS Google Scholar
Thurston, T. R. et al. Observation of two length scales in the magnetic critical fluctuations of holmium. Phys. Rev. Lett. 70, 3151–3154. https://doi.org/10.1103/physrevlett.70.3151 (1993).
Article ADS CAS PubMed Google Scholar
Thurston, T. R. et al. X-ray- and neutron-scattering measurements of two length scales in the magnetic critical fluctuations of holmium. Phys. Rev. B 49, 15730–15744. https://doi.org/10.1103/physrevb.49.15730 (1994).
Article ADS CAS Google Scholar
Plakhty, V. P. et al. Chiral criticality in helimagnet Ho studied by polarized neutron scattering. Phys. Rev. Bhttps://doi.org/10.1103/physrevb.64.100402 (2001).
Article Google Scholar
Download references
This work was supported by Grants-in-Aid for Scientific Research, Grant No. 19KK0070, from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. The authors acknowledge support by Grants No. PID2022-138492NB-I00-XM4 funded by MCIN/AEI/10.13039.501100011033, OTR02223-SpINS from CSIC/MCIN and DGA/M4 from Diputación General de Aragón (Spain). MPS acknowledges a predoctoral research fellowship from Diputación General de Aragón (Spain). Authors acknowledge the SANE service of ILL and in particular to C. Payre for his valuable support during the experiments.
Instituto de Nanociencia y Materiales de Aragón (CSIC – Universidad de Zaragoza) and Depto. de Física de la Materia Condensada, C/Pedro Cerbuna 12, 50009, Zaragoza, Spain
M. Pardo-Sainz, F. Cova, I. Puente-Orench & J. Campo
Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuencho, Sakai, Osaka, 599-8531, Japan
M. Pardo-Sainz
Institut Laue Langevin, 71 avenue des Martyrs CS 20156, 38042, Grenoble Cedex 9, France
J. A. Rodríguez-Velamazán
Department of Physics and Electronics, Osaka Metropolitan University, 1-1 Gakuencho, Sakai, Osaka, 599-8531, Japan
Y. Kousaka
Graduate School of Engineering, Kyushu Institute of Technology, Kitakyushu, 804-8550, Japan
M. Mito
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
The authors contributed to the work as a team.
Correspondence to J. Campo.
The authors declare no competing interests.
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Reprints and Permissions
Pardo-Sainz, M., Cova, F., Rodríguez-Velamazán, J.A. et al. Revisiting the magnetic structure of Holmium at high pressure by using neutron diffraction. Sci Rep 13, 12168 (2023). https://doi.org/10.1038/s41598-023-39284-2
Download citation
Received: 29 May 2023
Accepted: 22 July 2023
Published: 27 July 2023
DOI: https://doi.org/10.1038/s41598-023-39284-2
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.